手动制作mac电脑的windows安装盘,不通过系统的bootcamp

如果想在Mac上安装windows系统,通常我们是使用macOS系统自带的bootcamp工具,通过iso映像,下载windows支持软件来制作系统安装盘.但是如果电脑的macOS系统已经损坏,重新安装windows系统将会变得很麻烦.
博主分析了一下安装盘的内容,发现可以通过手动下载bootcamp文件的方式,在window系统下制作安装盘,而不用很繁琐通过Mac系统来制作
1. 下载bootcamp驱动支持包
a. 如果你要装的系统是windows7或者windows8.
请到https://support.apple.com/zh_CN/downloads/bootcamp来选择合适的bootcamp
b.如果你要安装的系统是windows10 手动下载bootcamp支持包可以
参考: http://blog.csdn.net/still_night/article/details/53862465
2. 下载windows系统,可以去 http://msdn.itellyou.cn
3. 使用ultraiso工具,把下载好的windows iso映像写入到U盘
4. 把下载好的bootcamp支持包解压缩到U盘
5. 制作完成

已标记关键词 清除标记
自己写的读取声音文件识别序号的神经网络代码,读取wav文件没有问题,fc1层的时候出错,我是学生,希望大佬帮忙指正。 ``` str.encode('utf-8') import numpy import scipy.io.wavfile from scipy.fftpack import dct import torch import torch.nn as nn import torch.optim as optim def Read_wav(wav_name): sample_rate, signal = scipy.io.wavfile.read(wav_name) # File assumed to be in the same directory signal = signal[0:int(3.5 * sample_rate)] # Keep the first 3.5 seconds pre_emphasis = 0.97 emphasized_signal = numpy.append(signal[0], signal[1:] - pre_emphasis * signal[:-1]) frame_size = 0.025;frame_stride = 0.01 frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate # Convert from seconds to samples signal_length = len(emphasized_signal) frame_length = int(round(frame_length)) frame_step = int(round(frame_step)) num_frames = int( numpy.ceil(float(numpy.abs(signal_length - frame_length)) / frame_step)) # Make sure that we have at least 1 frame pad_signal_length = num_frames * frame_step + frame_length z = numpy.zeros((pad_signal_length - signal_length)) pad_signal = numpy.append(emphasized_signal, z) # Pad Signal to make sure that all frames have equal number of samples without truncating any samples from the original signal indices = numpy.tile(numpy.arange(0, frame_length), (num_frames, 1)) + numpy.tile( numpy.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T frames = pad_signal[indices.astype(numpy.int32, copy=False)] frames *= numpy.hamming(frame_length) # frames *= 0.54 - 0.46 * numpy.cos((2 * numpy.pi * n) / (frame_length - 1)) # Explicit Implementation ** NFFT = 512# or 216 mag_frames = numpy.absolute(numpy.fft.rfft(frames, NFFT)) # Magnitude of the FFT pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2)) # Power Spectrum nfilt = 40 low_freq_mel = 0 high_freq_mel = (2595 * numpy.log10(1 + (sample_rate / 2) / 700)) # Convert Hz to Mel mel_points = numpy.linspace(low_freq_mel, high_freq_mel, nfilt + 2) # Equally spaced in Mel scale hz_points = (700 * (10 ** (mel_points / 2595) - 1)) # Convert Mel to Hz bin = numpy.floor((NFFT + 1) * hz_points / sample_rate) fbank = numpy.zeros((nfilt, int(numpy.floor(NFFT / 2 + 1)))) for m in range(1, nfilt + 1): f_m_minus = int(bin[m - 1]) # left f_m = int(bin[m]) # center f_m_plus = int(bin[m + 1]) # right for k in range(f_m_minus, f_m): fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1]) for k in range(f_m, f_m_plus): fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m]) filter_banks = numpy.dot(pow_frames, fbank.T) filter_banks = numpy.where(filter_banks == 0, numpy.finfo(float).eps, filter_banks) # Numerical Stability filter_banks = 20 * numpy.log10(filter_banks) num_ceps = 12 mfcc = dct(filter_banks, type=2, axis=1, norm='ortho')[:, 1 : (num_ceps + 1)] # Keep 2-13 #(nframes, ncoeff) = mfcc.shape #n = numpy.arange(ncoeff) #lift = 1 + (cep_lifter / 2) * numpy.sin(numpy.pi * n / cep_lifter) #mfcc *= lift #* filter_banks -= (numpy.mean(filter_banks, axis=0) + 1e-8) mfcc -= (numpy.mean(mfcc, axis=0) + 1e-8) #return filter_banks.shape mfcc = mfcc.reshape(-1,1)[:2484] return mfcc.reshape(1,-1)#[1,2484] count_number = 3 # 定义网络结构 class Net(nn.Module): def __init__(self,count_number): super(Net, self).__init__() self.fc1 = nn.Linear(2484,1)#3 self.softmax = nn.Softmax(dim=1) def forward(self,x): x = torch.FloatTensor(x) x = x.view(-1,1) x = self.fc1(x) x = self.softmax(x) return x LR = 0.0003 # 定义模型 model = Net(count_number) # 定义代价函数 entropy_loss = nn.CrossEntropyLoss() #定义优化器 optimizer = optim.Adam(model.parameters(), LR) def train(t,labels): # 获得数据和对应的标签 inputs = torch.FloatTensor(Read_wav(t))#[1,2484] #input('实际说话人:{0:Hu,1:Cao,2:Peng }') target = torch.ones(1) print(target) out = model(inputs).reshape(3)#[1,3] print(out) # 计算损失值 loss = entropy_loss(out, target) # 梯度清0 optimizer.zero_grad() # 计算梯度 loss.backward() # 修改权值 optimizer.step() for i in range(1,201): train('0 (%s).wav' %(i) , 0) ```
©️2020 CSDN 皮肤主题: 黑客帝国 设计师:上身试试 返回首页